EWS AISI410 | EWS A2

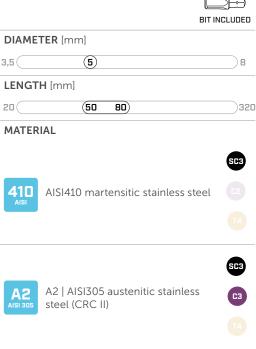
CONVEX HEAD SCREW

AESTHETIC PERFORMANCE AND ROBUSTNESS

Countersunk teardrop shaped head with curved surface for a pleasant look and firm grip with the bit. The increased shank diameter with high torsional strength for a strong, safe screwing even in high density woods.

EWS AISI410

The martensitic stainless steel version offers the highest mechanical performance. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.).


EWS A2 | AISI305

The austenitic A2 stainless steel version offers higher corrosion resistance. Suitable for outdoor applications up to 1 km from the sea and on most of T4 class acid woods.

-

EWS AISI410 EWS A2 | AISI305

FIELDS OF USE

Outdoor use. WPC boards (with pre-drill).

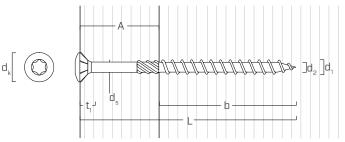
EWS AISI410: wooden boards with density of < 880 kg/m³ (without pre-drill).

EWS A2 | AISI305: wooden boards with density of $< 550 \text{ kg/m}^3$ (without pre-drill) and $< 880 \text{ kg/m}^3$ (with pre-drill).

344 | EWS AISI410 | EWS A2 | DECKS AND FACADES

CODES AND DIMENSIONS

EWS AISI410


d1	CODE	L	b	А	pcs
[mm]		[mm]	[mm]	[mm]	
5 TX 25	EWS550	50	30	20	200
	EWS560	60	36	24	200
	EWS570	70	42	28	100
	EWS580	80	48	32	100

EWS A2 | AISI305

d₁ [mm]	CODE	L [mm]	b [mm]	A [mm]	pcs
5 TX 25	EWSA2550	50	30	20	200
	EWSA2560	60	36	24	200
	EWSA2570	70	42	28	100

GEOMETRY AND MECHANICAL CHARACTERISTICS

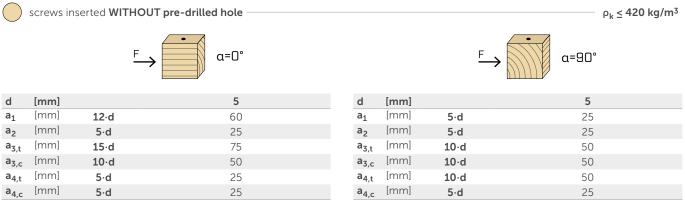
410

GEOMETRY

Nominal diameter d_1 Imm] 5,3 5,3 Head diameter d_K [mm] 8,00 8,00 Thread diameter d_2 [mm] 3,90 3,90 Shank diameter d_S [mm] 4,10 4,10 Head thickness t_1 [mm] 3,65 3,65 Pre-drilling hole diameter ⁽¹⁾ d_V [mm] 3,5 3,5				EWS AISI410	EWS A2 AISI305
Thread diameter d2 [mm] 3,90 3,90 Shank diameter d5 [mm] 4,10 4,10 Head thickness t1 [mm] 3,65 3,65	Nominal diameter	d ₁	[mm]	5,3	5,3
Shank diameter d _S [mm] 4,10 4,10 Head thickness t ₁ [mm] 3,65 3,65	Head diameter	dĸ	[mm]	8,00	8,00
Head thickness t_1 $[mm]$ $3,65$ $3,65$	Thread diameter	d ₂	[mm]	3,90	3,90
	Shank diameter	ds	[mm]	4,10	4,10
Pre-drilling hole diameter ⁽¹⁾ d _y [mm] 3.5 3.5	Head thickness	t ₁	[mm]	3,65	3,65
	Pre-drilling hole diameter ⁽¹⁾	d _V	[mm]	3,5	3,5

 $^{(1)}$ For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS


			EWS AISI410	EWS A2 AISI305
Nominal diameter	d1	[mm]	5,3	5,3
Tensile strength	f _{tens,k}	[kN]	13,7	7,3
Yield moment	M _{y,k}	[Nm]	14,3	9,7
Withdrawal resistance parameter	f _{ax,k}	[N/mm ²]	16,5	16,6
Associated density	ρ _a	[kg/m ³]	350	350
Head-pull-through parameter	f _{head,k}	[N/mm ²]	21,1	21,4
Associated density	ρ _a	[kg/m ³]	350	350

WITHOUT PRE-DRILLED HOLE

EWS AISI410 can be used, without pre-drill, in woods having a maximum density of 880 kg/m³. EWS A2 | AISI305 can be used, without pre-drill, in woods having a maximum density of 550 kg/m³.

MINIMUM DISTANCES FOR SHEAR LOADS

 α = load-to-grain angle

d = screw diameter

screws inserted WITHOUT pre-drilled hole 420 kg/m³ < $\rho_k \le 500$ kg/m³ α=0° α=90°

d	[mm]		5
a ₁	[mm]	15·d	75
a ₂	[mm]	7∙d	35
a _{3,t}	[mm]	20·d	100
a _{3,c}	[mm]	15·d	75
a _{4,t}	[mm]	7∙d	35
a _{4,c}	[mm]	7∙d	35

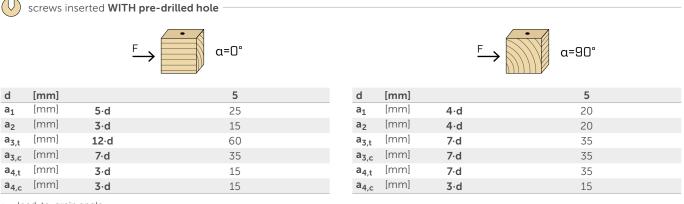
d	[mm]		5
a ₁	[mm]	7∙d	35
a ₂	[mm]	7∙d	35
a _{3,t}	[mm]	15·d	75
a _{3,c}	[mm]	15·d	75
$a_{4,t}$	[mm]	12·d	60
$a_{4,c}$	[mm]	7∙d	35

 $\alpha = load-to-grain angle$

d = screw diameter

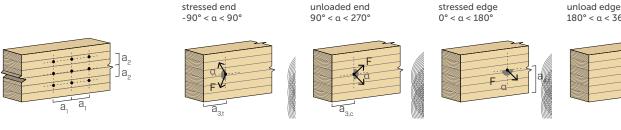
 $(\vee$

d


 a_1

a₂

a_{3,t}

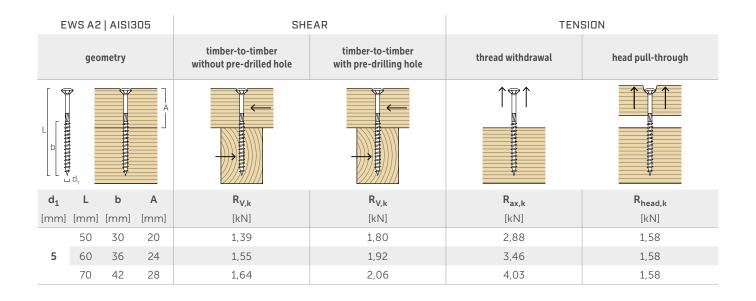

 $a_{3,c}$

 $a_{4,t}$

 α = load-to-grain angle

d = screw diameter

180° < α < 360°


NOTES

- The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = screw diameter.
- The minimum spacing for all panel-to-timber connections (a_1, a_2) can be multiplied by a coefficient of 0,85.

STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014

EWS AISI410		נ	SHE	EAR	TENSION		
geometry			timber-to-timber timber-to-timber without pre-drilled hole with pre-drilling hole		thread withdrawal	head pull-through	
			A				
d1	L	b	А	R _{V,k}	R _{V,k}	R _{ax,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	50	30	20	1,38	1,84	2,86	1,56
5	60	36	24	1,58	2,09	3,44	1,56
Э	70	42	28	1,77	2,21	4,01	1,56
	80	48	32	1,85	2,34	4,58	1,56

GENERAL PRINCIPLES

- Characteristic values according to EN 1995:2014.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation.

- Mechanical strength values and screw geometry comply with CE marking according to EN 14592.
- Values were calculated considering the threaded part as being completely inserted into the wood.
- Dimensioning and verification of the timber elements must be carried out separately.
- The screws must be positioned in accordance with the minimum distances.

NOTES

- The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
- The axial resistance to head pull-through was calculated using wood elements.
- + For the calculation process a timber characteristic density ρ_{k} = 420 kg/m^3 has been considered.